
DAA ISI Bangalore 17 Nov 2023

Final Examination
(3 hours)

Write your roll number in the space provided on the top of each page.
Write your solutions clearly in the space provided after each problem. If the space
provided is insufficient, please write your solution on additional sheets, and clearly
state in the main paper exactly where your solution appears. You may also use
additional sheets for working out your solutions; attach all additional sheets at the
end of the question paper. Attempt all problems.

Name and Roll Number:

Problem Points Score

1 20

2 20

3 20

4 20

5 20

Total: 100

Roll Number:
Design and Analysis of Algorithms
Final Examination (17 Nov 2023) Page 2 of 10

1. (a) 4(BFS and shortest paths) Consider a directed acylic graph G with a source vertex s,
where the edges have unit costs. We say that a tree T with root s is a shortest path
tree for G if for every vertex v, the unique path from s to v in T is a shortest s–v path
in G. Show a directed acylic graph G in which s is a source, and a shortest path tree
T for G with root s, such that no matter how the adjacency lists of the vertices of G
are ordered, T will NOT be the BFS tree if a breadth-first search is started at s.

(b) 4(DFS) Recall that the height of a rooted tree is the length of the longest path from the
root to a leaf. Let G be a connected undirected graph with a special vertex s. State if
the following statement is true or false.

If a depth-first search is started at s, then the tree that is produced is the
spanning tree in G with greatest possible height, that is, of all spanning trees
of G with s as root, this tree has the greatest height.

If you answer true, provide a short proof; if you answer false, show a graph and
(separately) a depth-first search tree for it that violates the statement.

Roll Number:
Design and Analysis of Algorithms
Final Examination (17 Nov 2023) Page 3 of 10

(c) 6(Nested loops) Consider the following code. Assume that the list A initially contains a
permutation of {0, 1, 2, . . . , n− 1}.
def rearrange(A):

n = len(A) # length of A

for i in range(n): # range(n) = [0, 1, ..., n-1]

j = i

while A[j] != j:

the following two lines swap A[j] and A[A[j]]

X, Y = A[j], A[A[j]]

(A[j], A[X]) = Y, X

Suppose A = [1, 2, 0, 3, 5, 4] initially. What are the contents of A after it is processed
by calling rearrange(A)?

Answer:

If rearrange is called on an n-element list A containing a permutation of {0, 1, . . . , n−
1}, how long does it take? Ignore constant factors, but write the tightest bound you
can in terms of n; write ∞ if the algorithm does not stop for certain inputs.

Answer: O()

(d) 6(Search) Suppose A[0], A[1], . . . , A[2k − 1] is a list of 2k distinct integers, initially
sorted in increasing order. Let P be a list of k disjoint pairs of the form (i, j), where
0 ≤ i < j ≤ 2k − 1; that is, we may regard P as a perfect matching of the elements of
{0, 1, 2, . . . , 2k − 1}. Suppose the following action is performed on the array A:

for (i,j) in P:

(A[i], A[j]) = (A[j], A[i]) \\ i.e., swap A[i] and A[j].

Now, given an integer x, describe how can one efficiently determine if x is in this
resulting list A, and determine where x it is stored. (Note: We no longer have access
to the pairs in P .)

Roll Number:
Design and Analysis of Algorithms
Final Examination (17 Nov 2023) Page 4 of 10

2. (Divide and conquer) Let A = A[0], A[1], . . . , A[n−1] be a list of n integers (assume n ≥ 1).
We wish to process A and produce another list B with n integers such that

B[i] = A[0] ⋆ A[1] ⋆ · · · ⋆ A[i− 1] ⋆ A[i+ 1] ⋆ · · · ⋆ A[n− 1],

that is, B[i] is the product of all elements of A except A[i]. We call the list B, the list of
partial products.

(a) 10The function partial products below is meant to take an array A and returns a pair
(B, p), where B is the list of partial products and p is the product of all elements in A.
Provide the missing parts in the code below (at the five places marked by ???).

def partial_products(A):

if len(A) == 1: # base case

return(1, ______) # ???

else:

ell = len(A)//2 # ell = integer part of len(A)/2

A1 = A[0:ell] # A1 = A[0]...A[ell-1]

A2 = A[ell:] # A2 = A[ell]...A[len-1]

(B1, p1) = ______________ # ???

(B2, p2) = ______________ # ???

for i in range(len(B1)):

B1[i] *= __________________ # ???

for i in range(len(B2)):

B2[i] *= __________________ # ???

return (B1 + B2, p1*p2)

B1 + B2 is the concatenation of B1 and B2

(b) 10Write and solve a recurrence for the running time of the algorithm. Assume that the
concatenation B1+ B2 takes time proportional to the sum of the lengths of B1 and B2.

Roll Number:
Design and Analysis of Algorithms
Final Examination (17 Nov 2023) Page 5 of 10

3. (Dynamic programming) Given a set of n closed intervals, I1, I2, . . . , In in R, with weights
w1, w2, . . . , wn, where the interval Ij has the form [aj , bj] (aj < bj). Assume that the 2n end
points a1, a2, . . . , an, b1, b2, . . . , bn are distinct; furthermore, assume that the intervals have
been provided in the increasing order of their right end points, that is, b1 < b2 < · · · < bn.
For the following solutions using dynamic programming, do not worry much about the base
cases (but state which values constitute the base cases, and which values are to be computed
using the recurrence); it will be sufficient if you write the recurrences accurately. Explain
what your doing; don’t just write some code.

(a) 8We wish to find a subset of intervals with maximum total weight, such that every
point in R is in at most one interval in the subset. Provide an efficient solution for this
problem.

Hint: For j = 1, 2, . . ., successively compute the maximum weight subset of disjoint
intervals among I1, I2, . . . , Ij ; letM [j] denote the weight of the maximum weight subset
of I1, I2, . . . , Ij , and show how you will compute M [j] if M [1], . . . ,M [j− 1] are known.
Note that your algorithm must not only compute the optimum weight but also list the
elements of the subset of disjoint intervals that provides that weight. For full credit,
the algorithm should run in time O(n log n). You will need to find an efficient way to
determine the largest j such that bj < a for a given a ∈ R.

Roll Number:
Design and Analysis of Algorithms
Final Examination (17 Nov 2023) Page 6 of 10

(b) 12Now, we wish to find a subset of intervals with maximum total weight, such that every
point in R is in at most TWO intervals in the subset.
Hint: Define M2[i, j] (i ≤ j) to be the maximum total weight of a subset of intervals
among I1, I2, . . . , Ij , where all points in (bi,∞) are covered at most once and all points
in (−∞, bi] are covered at most twice. Consider two cases based on whether or not
aj < bi. In each case, state which previously computed values will be used to determine
M2[i, j]. For full credit, present an algorithm with running time O(n2 log n).

Roll Number:
Design and Analysis of Algorithms
Final Examination (17 Nov 2023) Page 7 of 10

4. We are given a directed network G = (V,E) (|V | = n, |E| = m) with capacities (ce : e ∈ E)
and flows (fe : e ∈ E).

(a) 12In the graph shown below, the label on edge e has the form fe/ce.

a b c

s e f g t

h i j

8/8

4/11

12/12

5/5

3/4

10/11

11/12

10/15

5/5

7/7

0/5

6/6

1/1

3/5

9/11

2/2

7/9

7/7

(i) Draw the residual network for G wrt the given flow.

a b c

s e f g t

h i j

(ii) State why the given flow is optimal?

(iii) List all the edges e of the above graph such that if we increase ce (keeping the
other capacities untouched), the max-flow for the network will increase. (Only list
the edges; you don’t have to show the flows with greater value explicitly.)

Roll Number:
Design and Analysis of Algorithms
Final Examination (17 Nov 2023) Page 8 of 10

(b) 8For a general network G(V,E) with a given s-t maximum flow, describe an algorithm
that in time O(m+ n) lists all edges e ∈ E, such that if we increase ce, the max-flow
for the network will increase.

5. (a) 10Consider the 3-colouring problem for undirected graphs. Suppose there is a decision
algorithm A to determine if a graph is 3-colourable, that is, A(G) is 1 if G is 3-colorable,
and 0 otherwise. We wish to use A to design a method to find the 3-colouring for G if
one exists. Consider the following method; assume that G is 3-colourable.

Step 1: Let vR, vG, vB be three new vertices. Let H0 be the graph obtained from G by
adding a triangle on these vertices. That is, let V (H0) = V (H)∪{vR, vG, vB}, and
E(H0) = E(G) ∪ {{vR, vG}, {vG, vB}, {vR, vB}}.

Step 2: We will add edges between the three new vertices and each vertex v of G, and use
the algorithm A to determine the colour χ[v] for the vertex v. Initially, set k = 0;
k denotes the number of vertices of G that have been processed.

Step 3: (*) For v ∈ V (G):

(i) Let Htmp = (V (H0), E(Hk ∪ {{v, vG}, {v, vB}});
if A(Htmp) = 1, then set χ[v] = Red, Hk+1 = Htmp, and go to (*);

(ii) Let Htmp = (V (H0), E(Hk ∪ {{v, vR}, {v, vB}});
if A(Htmp) = 1, then set χ[v] = Green, Hk+1 = Htmp, and go to (*);

(iii) Set χ[v] = Blue, Hk+1 = Htmp, and go to (*);

Continued on the next page . . .

Roll Number:
Design and Analysis of Algorithms
Final Examination (17 Nov 2023) Page 9 of 10

Formulate a suitable induction hypothesis about the 3-colourability of the graph Hk,
for k = 0, 1, ..., n, and show that the algorithm is correct. Assume that the A takes
time tA(m,n) in the worst case for graphs with n vertices and m edges. Show an upper
bound on the running time of the above algorithm to find a 3-colouring for a graph
with n vertices and m edges in terms of tA(·, ·), m and n.

Roll Number:
Design and Analysis of Algorithms
Final Examination (17 Nov 2023) Page 10 of 10

(b) 10Show directly (without appealing to the Cook-Levin theorem) a polynomial time re-
duction from the graph 3-colouring problem (3COL) to the problem 3SAT. That is,
describe a polynomial time transformation:

T : G 7→ Φ,

that maps undirected graphs to 3CNF Boolean expressions. State the following clearly:
(i) the variables that appear in T (G), and what they stand for; (ii) the clauses of T (G);
(iii) how T (G) is obtained efficiently from G; (iv) why T (G) is satisfiable if G is 3-
colourable; (v) why G is 3-colourable if T (G) is satisfiable.
Hint: For each vertex v, define three Boolean variables Rv, Gv, Bv, which are supposed
to indicate if the vertex v is assigned red, green or blue.

